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We derive a Monte Carlo Green function with a quadratic time-step bias, and point out the
importance of properly simulating the discontinuities of the drift function at the nuclei. We
suggest that for small atoms and molecules, where the nodes in the trial function are well
separated, our algorithm enables one to use large time steps, thus gaining in precision of the
ground-energy estimate by dramatically reducing the serial correlation of consecutive
iterations.  © 1986 Academic Press, Inc.

1. THEORY

Consider the time-dependent Schroedinger equation in imaginary time

o0d(R,
—%ﬁ=(1f—Eo)¢(R,I), (1)

where R is a 3N-dimensional vector of coordinates of N particles, and E, is the
ground-state energy of the problem.
Instead of ¢ we will consider the time-dependent function

f(R, 1) =¢(R, 1) Y 1(R), (2)

where - is a “trial” approximate solution for the ground state of the time-indepen-
dent version of (1). f(R, 1) can be interpreted as a probability density function of a
statistical distribution. In this manner, we obtain a reduced variance of the
stochastic estimate of the ground-state energy E, . This idea was described by Kalos
and co-workers [1], and then applied by Ceperley and co-workers [2-4], and
Anderson and co-workers [5, 6].

It is important that ;- be readily calculable, yet as accurate a solution as such a
compromise can allow. If the particles are fermions, care should be taken to have
¥ r approximate the nodal regions as closely as possible [4].

It can be shown [4] that ¢o(R) ¥ {(R), where ¢4(R) is the exact solution to the
time-independent version of (1), is the asymptotic (as t — oo) solution to

of (R, 1)

— == ~DVf+ DV (Ff)+ (EL(R)~ Eo) £ (3)
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where E, is the “local energy” of the trial function, namely
E/(R)=yr'#Y; (4)
and “the drift” F is defined as
F(R)=2Vy (R)/y (R). (5)

E, is the ground-state energy, common to both (1) and (3).

The objective of our paper is to amend the diffusion Monte Carlo technique for
solving Eq. 3 [4] by modifying its algorithm to achieve more favourable time-step
bias (without significant increase in computational cost). There exists an alternate
technique (Green function Monte Carlo [9]) with no time-step bias; this is accom-
plished at the expense of substantially increased branching (thus adversely affecting
the statistical error of the procedure). We have chosen to work only with the former
technique, which we prefer for its relative simplicity and higher statistical accuracy. .
The error due to finite time step can be easily removed by subsequent regression
(see the next section).

Rewriting (3) as

o 2
5= L A (6)

(the s#s corresponding to the three individual terms on the right-hand side of
Eq. 3), in a manner similar to that of Grimm and Storer [7], one can express the
Green function of Eq. (3), ie, 4(R— R’ ¢), in terms of the individual Green
functions 4(R — R’, t) of

_gzjﬁf, i=0,1,2, (7)
The result is
4R -R/, t)='[dR1 dR, dR; dR,%(R >R, 1/2) %(R, > R,, 1/2)
X %R, > R5, 1) %(R; >Ry, 1/2)-%(R, - R, 1/2) + O(£3), (8)

where O(#%) is an operator of third order in ¢.
Green functions %, and %, are well known:

%R >R, t)=(4nDt)"** exp{ — (R’ —R)?*/4Dt} 9)
%R >R’ t)=exp{— (EL(R)—Eo) 1} 6(R-R'). (10)

%, (derived in Appendix A) is equal to
%(R—-R', 1)=06(R'—R(1)), (11)
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where R(?) is the position of the particles at time ¢, if they are subjected to the drift
DF, and being initially (=0) at R. More precisely, R(¢) is defined as the solution
to the following set of differential equations:

dR(t)/dt = DF(R(t)) (12)

with R(0)=R.
After substituting Green functions (9)-(11) into Formula (8), one may perform
the trivial integration over R, R,, and R, to obtain

(R - R, 1) = (4nDt) M2 -exp{ —t[(E,(R) + E.(R'))2— Eo]}
x j dR; (R’ —R,(1/2))-expi — (R(/2) —R;)/4Dt} + O().  (13)

The above delta function has as its argument a function of R;, therefore it must
be replaced (see [8]) by

S(R; —R'(—1#/2))-J~'(Ry(#/2), R3)l gy me( - 12)5 (14)
where J is the Jacobian of the transformaton in parentheses. It is evaluated at
R; =R'(—1/2) because this is the only value of R; which meets

R’ —R;(#/2)=0. (15)
Integration in Formula 13 is now trivial. We get as the result
4R >R, 1)=(4nDt) " exp{ —t[(E.(R)+ E,(R"))/2— E,]}
~exp{ — (R(t/2) — R'(—1/2))*/4Dt}
T (R3(#/2), Ryl gy = rery + O(1). (16)
We now expand R(7/2), defined by (12), as a Taylor series in f:
R(t/2)=R + DtF(R)/2+ D**H(R)F(R)/8+ -, (17)

where H is the matrix of all spacial derivatives of F. Substituting (17) and its analog
for R'(—1/2) into Eq. (16) leads to the following further simplification:

(R - R, 1)= (4nDt) M2 -exp{ —t[(EL(R) + E,(R'))/2 — Eo1}
xexp{— [R' — R — (Dt/2)(F(R’) + F(R))]%/4D1}
x det{I— (Dt/2) H(R')} + O(¢*), (18)

where I is the unit matrix. This simplification is due to the fact that the contribution
of

—(Dy/16)(R'—R)- [H(R") F(R") — H(R) F(R)] (19)
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(a term in the expansion of the second exponent in Eq. (16)) to the overall ¢ is the

same as that of
2,2

8

d
Trace = (HF)|gr> (20)

which is the quadratic term in the expansion of the Jacobian. The analytic proof of
the legitimacy of this “trade-off” has been published elsewhere [10] by one of us.

One can now simulate (18) by a Monte Carlo procedure combining drift, dif-
fusion, and branching of a random assemble of configurations [4]. Proper care has
to be taken to simulate these with the required accuracy. Specifically, as most trial
functions result in F-discontinuities (at the nuclei), it is erroneous to simulate the
drift at R, by tDF(R,) when R, is very close to a nucleus (the “overshooting”
effect), and an appropriate correction is called for (see Sect. 3). (The discontinuities
due to two electrons coalescing, being of repulsive nature, can be simulated without
any such correction).

Similarly, since £, (R) has many singularities (due to V(R) and incorrect nodes of
¥ ;), one must ensure that the corresponding branching remains 7%-accurate. There
is no experimental nor theoretical indication that positive singularities of E; should
create any problem, mainly because of proper convergence of the three-dimensional
{vexp{—t/r} dr (V is a small volume centered at the origin). On the other hand,
for negative singularities, since {y exp{ +/r} dr = co, it is impossible to simulate the
exact branching correctly. If these singularities are truncated in a r-neighborhood of
each singularity, a quadratic perturbation of the original equation will result, and
branching poses no difficulty. Furthermore, by keeping the expected number of
configurations in each iteration constant (as we propose in Sect.2), an effective
truncation of the singularities is achieved automatically (at the expense of introduc-
ing a quadratic bias). Keeping in mind the above pitfalis (which will plague any
simulation algorithm) we proceed with a detailed description of how to simulate
(18).

To preserve the efficiency of the algorithm, we need to use a procedure requiring
only one evaluation of F and E, per time step. At the same time, to preserve the -
accuracy of (18), it is necessary to use a t>-accurate R’ (thus, F(R’) needs to be only
t-accurate), followed by branching which requires only a r-accurate value of E,(R’).

Figure 1 shows how to perform the actual simulation, meeting the above objec-

{Dr/2){E(Ro)-E(R))

QI(O.VZDr)

DrF (R)
R

Fic. 1. Description of the move R— R'.
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tives. The values of F(R;), E,(R{) and R’ are stored to become F(R), E, (R) and R,
respectively, of the next time step.

In the figure N(O, (2D¢)"?) represents a random 3N-dimensional vector with
components independently generated from a symmetric distribution centered at
zero, with the variance equal to 2D7 and the forth moment equal to 12D%% The
normal distribution is used routinely here, in spite of the fact that it corresponds to
the least economical choice, and also results in a large error when not corrected for
the discontinuities in F (see Sect. 3 and Fig. 2). We propose using

+2.44886 (£2—. 0542927), (21)

where ¢ is uniformly distributed over the interval (0, 1) and + represents a random
sign, as an attractive alternative.

-11440
-11480
-11520
-11560
-11600
':‘ -11640
-11680
-11720
-11760

-1.1800

0.0

FiG. 2. Total energy of H, molecule versus time step. Results with continuity correction (30) and
normal distribution (V), with continuity correction (28), and non-normal distribution of Section 1(O),
and without continuity correction and normal distribution ((J).
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2. ALGORITHM

Choose a specific small value of the time step ¢, also generate a set of M 3N-
dimensional configurations ™R, m=1,2,., M, from an arbitrary initial dis-
tribution. Advance each of the M configurations in accord with Fig. 1. Then, for
each configuration, compute the following quantity:

B, =exp{ —t/2(E,(""Ry) + E ("'R))} (22)
and find its average value

B=5 B,/M (23)

1

i Mz

For each m, take M, copies of the new configuration "R’ to create a new list of
M’ configurations, where

M, =int{B,/B+¢}, (24)
¢ is a uniform random number from the interval (0, 1), M’ is the sum of all these

M,,-values. At the same time, —log,{B}/t provides an estimate of E,. One should
note (see Appendix B) that this estimate is, within the t*-accuracy, equivalent to

Zm_ 1 EL("Ry) XY E ("R)
2M M ’

(25)

where the first summation is over the new list of configurations (after branching).

The subsequent time steps (iterations) will thus consist of a variable (M’ say)
number of configurations. The energy estimate is always given by —log.{B}/s,
where B is the average value of B,, over the M’ configurations. However, one must
use the following modified version of (23) to prevent a random “extinction” or
“explosion” of the “population” of configurations, which would otherwise be an
inevitable consequence of the well-known laws of stochastic processes:

M, =int{(B,/B) (M/M')+¢&} (26)

Repeat these iterations a large number (usually a few thousand) of times to
reduce the statistical error of the overall estimate of E, (obtained by simple averag-
ing of the individual estimates, excluding the first few iterations which are required
for the process to reach the stationary solution).

To determine the standard error of this overall mean, divide all iterations into
several large blocks of the same size, compute the block averages, then combine
them using the ordinary statistical formula for independent observations (which the
block averages practically are) to get the error bar of the E,-estimate.

Finally, repeat the whole procedure for several (four to six) distinct values of .
Each of the grand-mean estimates of E, will have a systematic error (bias) of the 1>
order (ie., Ey(t)=E,+a-t*+ ---) which can be removed by the standard
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(weighted) least-squares fit. The regression inercept provides an unbiased estimate
of the ground-state energy E,. How to choose an appropriate polynomial model for
Ey(?) and how to design a simulation with optimal choice of the z-values and the
corresponding CPU allocation will be discussed in a future publication [11].

3. CoNTINUITY CORRECTION

To ensure continuity of F at the nuclei (which is required by the quadratic
algorithm) we had to modify the simulation of the tDF-drift as follows:

For each of the N electrons, define r;, to be the 3-dimensional distance from the
electron to its nearest nucleus. Let F ;) be the corresponding 3-dimensional “com-
ponent” of F; then

ty= g Fo)/ IDF ) Fy)l (27)

1s the time at which this electron would reach its closest distance to the nucleus, if it
were to move with constant velocity DF ;. When this point of closest distance is
“within sight” of the subsequent tDF;, “drift” (see Fig. 1), say when 0 <1 ;<21
redefine F;, by replacing it with

Fiy=Qwg—wiy) [wiiF o+ (1L —wid)r /D], (28)

where w;,=1,/2t. The first factor causes the magnitude of F’ continuously
decrease to zero (at the closest distance to nucleus), the second one results in a con-
tinuous change of direction, turning F towards the nucleus. Thus, the drift actually
simulated will prohibit electrons from “overshooting” past a nucleus (algorithms
allowing this result in a very detrimental contribution to the error of the Ey(¢)
estimates).

This modification of F;,, repeated for each electron, obviously makes it con-
tinuous at each nucleus. Since the modification is done only in a f-neighborhood of
a nucleus, it is not necessary to correspondingly modify the local energy E,(R).
This is due to the fact that the difference between the properly modified E, and the
original E; can be considered a t>-order perturbation of Eq. 3, and as such inconse-
quential. In choosing (28) we attempted to approximate the exact (i.e., continuous
in time) drift due to the original F(R(¢)) as accurately as possible. Nevertheless,
there is definitely room for additional improvement of this part of the algorithm.

One such alternative (presently without a theoretical justification) is to modify
the computation of F (but not of E,) at all R by replacing every term of the type

CR) 1 /17 e | (29)
(C(R) being a continuous function) by

CR)r /(T |+ 1 {CR))), (30)
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where r;, is the 3-dimensional distance from the jth electron to the kth nucleus,
and a is an adjustable parameter. For the hydrogen molecule, the value of « =0.65
gives very good results in conjunction with the normal distribution (see Fig. 2), the
alternate distribution of Formula (21) requires o« =0.3.

4. APPLICATION AND DISCUSSION

For illustration purposes we applied the algorithm to the ground state of
Hydrogen molecule. The trial function we used was that of [4], with distances in
atomic units:

r=Lexp{—1.285r,} +exp{—1.285r,,} ] [exp{ —1.285r,,}
+exp{—1.285r,,}] exp{.28r,,/(1 +.05r ;) }. (31)

An initial list of M =2000 configurations was randomly generated from an
arbitrary distribution. After reaching equilibrium, these were advanced through 200
iterations per block. Sufficient number of blocks were used to make the error bars

TABLE I

Diffusion Monte Carlo Estimates of the Ground State Energy of H4?

With continuity correction Without continuity correction?
t Ey(t)° g Eq(t)y” o Ey(1) g
0.1 —1.1735 2(—4) —1.1734 3(—4) ~1.1792 4(—4)
0.2 —1.1722 2(—4) —1.1679 2(—4) —1.1809 4(—4)
0.3 —1.1683 1(—4) —1.1604 2(—4) —1.1785 2(—4)
04 —1.1639 3(—4) —1.1518 2(—4) —1.1734 1(—4)
0.5 —1.1594 2(—4) —1.1435 1(—4) —1.1656 3(—4)
Model
Ey(t)=Ey+ar*+ br* Eft)=Eq+at+bt*+crt
Ey= —1.1745 +.0002 —1.1749 +.0003 Ey= —1.1741 £ 0012
a=  .0735+.0037 1801 +.0046 a= —.0702+.0126
b= —.0509+.0132 —.2180+.0154 b= .1905+.0321

c= —.0640+.0497

¢ All quantities are in atomic units.

® Each simulation uses an initial list of 2000 configurations and 200 iterations per block. Averages and
standard deviations are obtained from 3 (largest ¢) to 12 (smallest ¢) blocks, discarding the results of the
first block. E§* = —1.1745 a.u. and y 1 is given by (31), with the nuclei separation of 1.401 a.u. (taken
from [4]).

¢ Using continuity correction (28), and non-normal distribution of Section 1.

¢ Without continuity correction, using the normal distribution.

¢ Using continuity correction (30), and the normal distribution.
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of individual energy estimates (calculated at five distinct values of ) reasonably
small.

The results are reported in Table I (plotted in Fig. 2} for both the normal dis-
tribution, and that of Formula (21). Also displayed is a set of results obtained by
ignoring the discontinuities in F, and using the normal distribution. The weighted
least-squares estimates of the Ey(z =0) intercept are calculated, using the inverse of
the observed variance for weights. The quadratic behaviour of our results is readily
apparent; one can also observe how detrimental is the F-discontinuity (especially in
combination with the normal distribution) when not properly corrected for.

APPENDIX A

We require a solution to the following differential equation:

—09(R >R, 1)

o =DVy.- [F(R) 4] (A1)

satisfying the boundary condition 4(R —» R’, 0) =6(R’'—R).
We will demonstrate that the solution is given by

4R >R, 1)=06(R'—R(1)), (A2)
where
dR(t)
e DF(R(1)) (A3)
with R(0)=R.

By inspection the solution is correct at ¢t =0. Now, substituting (A2) and (A3)
into (A1) yields

DF(R(1)) - '(R'—R(1))=D-[F(R) (R —R(#))+3(R"—=R(1)) V- F(R")]. (A4)

Multiplying (A4) by an arbitrary function X(R’) and integrating over R’ we
obtain

—D[F -VX]ry=D [~ (VX)F=XV-F + XV-F]Jg, (A3)

which is an identity. Thus (A2) is the desired solution to (Al).

APPENDIX B

In this Appendix we will establish the equivalence of —log- {B}/t and (25),
within the #>-accuracy. In the following < --- > will denote averaging over all con-
figurations before branching, € --- » will imply the same averaging after branching.
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From Formula (22)' we obtain
(B =1-5CE+EY+PEA+EP)/8+

where E,= E,;("'R), and E;= E,(‘'R}) see Fig. 1.
Thus

08B/t =S CE B}y — (B, + EY )8+ (B + EYY8 + -

= KB ED — (B E) [E+ Ei— B+ EDY + -

2
—1 E L E,-[B,/{B ---—1 E>+1 E»+ -
—§< i>+§< i [ :/< i>]>+ —§< i 'i(( i>+
since
E.=E'+0(1)
and

BB =1—3 (E+ Ei= B+ E) +O(F)
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